Devoir non surveillé

Une suite récurrente

Étant donné $x_0 \in \mathbb{R}$, on définit par récurrence la suite (x_n) d'itératrice $T: x \mapsto x^2 + x$.

- 1 On considère deux suites $(a_n) \in \mathbb{R}^{\mathbb{N}}$ et $(b_n) \in (\mathbb{R}_+^*)^{\mathbb{N}}$. Pour tout $n \in \mathbb{N}$, on note $A_n = \sum_{k=0}^n a_k$ et $B_n = \sum_{k=0}^n b_k$. On suppose que $\lim_n B_n = +\infty$.
 - **a** Montrer que si $a_n = o(b_n)$, alors $A_n = o(B_n)$.

Indication : fixer $\varepsilon > 0$, considérer un rang N_0 à partir duquel $|a_n| \leqslant \frac{\varepsilon}{2} b_n$ puis, en séparant la somme A_n en deux, montrer que $\left|\frac{A_n}{B_n}\right| \leqslant \varepsilon$ à partir d'un certain rang.

- **b** En déduire que si $a_n \sim b_n$, alors, $A_n \sim B_n$.
- **2** On suppose ici que $x_0 \in]-1,0[$.
 - a Montrer que (x_n) tend vers 0, et que les suites (x_n) et (x_{n+1}) sont équivalentes.
 - **b** Trouver une suite constante (b_n) équivalente à la suite définie par $a_n = \frac{-1}{x_{n+1}} + \frac{1}{x_n}$ pour tout $n \in \mathbb{N}$.
- **c** En appliquant la question 1.b aux suites de la question précédente, trouver une suite numérique classique équivalente à la suite (x_n) .
 - **3** On suppose ici $x_0 \in \mathbb{R}_+^*$.
 - a Montrer que (x_n) est à termes strictement positifs et tend vers $+\infty$.
 - **b** On considère la suite de terme général $y_n = 2^{-n} \ln x_n$.

Montrer que pour tout entier naturel n

$$0 < y_{n+1} - y_n \leqslant \frac{2^{-(n+1)}}{x_n}.$$

c En déduire que pour tous $n, m \in \mathbb{N}$:

$$0 < y_{n+m+1} - y_n \leqslant \frac{2^{-n}}{x_n}$$

d En déduire que (y_n) converge vers un réel strictement positif λ , et que pour tout $n \in \mathbb{N}$:

$$0 < \lambda - 2^{-n} \ln x_n \leqslant \frac{2^{-n}}{x_n}.$$

- **e** Montrer que $x_n \sim e^{\lambda(2^n)}$.
- **4** Si $x_0 \notin$] − 1,0[$\cup \mathbb{R}_+^*$, déterminer si la suite (x_n) admet une limite (et la donner, le cas échéant).